西安低氮燃燒器技術在大量電站燃煤鍋爐應用實踐證明,這項技術對于減少NO 的產生量是非常有效的。但是,在實際工作中,由于鍋爐使用的煤種不同,而且鍋爐型號也不同,使得NO 的產生量也各不同,產生的問題也不盡相同。
增加灰和爐渣可燃物,導致爐效降低
西安控制柜改造低氮燃燒器后,NO 的產生量降低很多,但是在使用同一種煤種時,飛灰可燃物升幅也較大。主要原因是低氮燃燒技術使用的是低溫和低氧燃燒方式,主燃區的溫度就會下降較多,煤粉是否著火就被控制并且推遲,并降低著火區的氧量,使煤粉燃燼能力下降,燃燒的過程被加長,飛灰和爐渣可燃物變多。部分鍋爐改造時改變了燃燒器的一、二次風噴口和燃盡風噴口的面積發生變化,致使一次風和二次風的混合推遲,這不利于煤粉的氣流著火和燃燒。
蒸汽參數偏離設計值,過熱器減溫水量增加或再熱器超溫
鍋爐采用空氣分級低氮燃燒技術改造后,一方面,燃燒延遲,火焰中心上移,爐膛出口煙溫上升,鍋爐的過熱汽溫、再熱汽溫上升,對于原來存在過熱汽溫、再熱汽溫超設計值的問題則加劇,過、再熱減溫水量增加。而另一方面,主燃區溫度降低,爐內溫度分布更加均勻,對于原來爐膛水冷壁的沾污結渣情況嚴重的則會改善,水冷壁吸熱增加,爐膛出口煙溫降低,過熱器溫升、再熱器溫升下降,對于原來存在過熱汽溫、再熱汽溫低的問題則更達不到超設計值。
低氮燃燒技術改造后,產生鍋爐過熱器減溫水量增大的問題較多,由于煤粉燃燒的過程變長,加上燃盡風的使用,使得爐膛出口的煙氣溫度變高,這時爐膛的溫度變低,爐膛水冷壁的輻射吸熱量就會降低,形成對流的受熱面的吸熱量就會增加,使得過熱器減溫水量增加。
鍋爐內部燃燒環境變壞,配煤、配風、穩燃性變低
因采用低溫、低氧燃燒,爐膛溫度下降,在低溫缺氧的環境下煤粉就會推遲著火,而且燃為灰燼的能力也會變弱,鍋爐內的燃燒環境和改造之前比變差。
西安燃燒機在鍋爐改造前使用的配煤、配風方式很大程度上不適用,不僅會對鍋爐的各項指標產生影響,還會使鍋爐低負荷穩燃的能力變低。